4,113 research outputs found

    Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current

    Full text link
    We study the asymmetric zero-range process (ZRP) with L sites and open boundaries, conditioned to carry an atypical current. Using a generalized Doob h-transform we compute explicitly the transition rates of an effective process for which the conditioned dynamics are typical. This effective process is a zero-range process with renormalized hopping rates, which are space dependent even when the original rates are constant. This leads to non-trivial density profiles in the steady state of the conditioned dynamics, and, under generic conditions on the jump rates of the unconditioned ZRP, to an intriguing supercritical bulk region where condensates can grow. These results provide a microscopic perspective on macroscopic fluctuation theory (MFT) for the weakly asymmetric case: It turns out that the predictions of MFT remain valid in the non-rigorous limit of finite asymmetry. In addition, the microscopic results yield the correct scaling factor for the asymmetry that MFT cannot predict.Comment: 26 pages, 4 figure

    Robustness of spontaneous symmetry breaking in a bridge model

    Full text link
    A simple two-species asymmetric exclusion model in one dimension with bulk and boundary exchanges of particles is investigated for the existence of spontaneous symmetry breaking. The model is a generalization of the bridge model for which earlier studies have confirmed the existence of symmetry-broken phases, and the motivation here is to check the robustness of the observed symmetry breaking with respect to additional dynamical moves, in particular, the boundary exchange of the two species of particles. Our analysis, based on general considerations, mean-field approximation and numerical simulations, shows that the symmetry breaking in the bridge model is sustained for a range of values of the boundary exchange rate. Moreover, the mechanism through which symmetry is broken is similar to that in the bridge model. Our analysis allows us to plot the complete phase diagram of the model, demarcating regions of symmetric and symmetry-broken phases.Comment: 26 pages, 12 figures, v2: minor changes with an added appendix, published versio

    Diffusion in a logarithmic potential: scaling and selection in the approach to equilibrium

    Full text link
    The equation which describes a particle diffusing in a logarithmic potential arises in diverse physical problems such as momentum diffusion of atoms in optical traps, condensation processes, and denaturation of DNA molecules. A detailed study of the approach of such systems to equilibrium via a scaling analysis is carried out, revealing three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x ~ \sqrt{t}) and a subdiffusive (x >> \sqrt{t}) length scales, respectively; (ii) the scaling exponents and scaling functions corresponding to both regimes are selected by the initial condition; and (iii) this dependence on the initial condition manifests a "phase transition" from a regime in which the scaling solution depends on the initial condition to a regime in which it is independent of it. The selection mechanism which is found has many similarities to the marginal stability mechanism which has been widely studied in the context of fronts propagating into unstable states. The general scaling forms are presented and their practical and theoretical applications are discussed.Comment: 42 page

    Set-Theoretic Geology

    Full text link
    A ground of the universe V is a transitive proper class W subset V, such that W is a model of ZFC and V is obtained by set forcing over W, so that V = W[G] for some W-generic filter G subset P in W . The model V satisfies the ground axiom GA if there are no such W properly contained in V . The model W is a bedrock of V if W is a ground of V and satisfies the ground axiom. The mantle of V is the intersection of all grounds of V . The generic mantle of V is the intersection of all grounds of all set-forcing extensions of V . The generic HOD, written gHOD, is the intersection of all HODs of all set-forcing extensions. The generic HOD is always a model of ZFC, and the generic mantle is always a model of ZF. Every model of ZFC is the mantle and generic mantle of another model of ZFC. We prove this theorem while also controlling the HOD of the final model, as well as the generic HOD. Iteratively taking the mantle penetrates down through the inner mantles to what we call the outer core, what remains when all outer layers of forcing have been stripped away. Many fundamental questions remain open.Comment: 44 pages; commentary concerning this article can be made at http://jdh.hamkins.org/set-theoreticgeology
    corecore